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Various ensembles of random matrices with independent entries are analyzed by the replica formalism in the
large-N limit. A result on the Laplacian random matrix with Wigner-rescaling is generalized to arbitrary

probability distribution.
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I. INTRODUCTION

Since the introduction of bosonic replicas in the study of
disordered systems and random matrices several decades ago
[1], most analytic investigations followed a path with three
basic steps.

(1) After defining a replica partition function, it is easy to
average it over the ensemble of random matrices to obtain a
replica partition function where the interaction of the replica
fields depends on the probability distribution of the en-
semble.

(2) A set of auxiliary fields are introduced by Hubbard-
Stratonovich identities to decouple the interacting pairs,
transforming the replica partition function in a form suitable
to the thermodynamic limit. In recent years a Gaussian func-
tional identity conveniently replaced the set of auxiliary
fields.

(3) The saddle-point method leads to a nonlinear integral
equation of very different complexity: it is trivially solved in
the case of Wigner matrices whereas it is extremely difficult
in the case of the Laplacian of a random graph.

This paper follows the well established steps, respectively
in Secs. II-IV with greater generality. Instead of choosing a
definite probability distribution, we consider the off-diagonal
matrix elements to be independent identically distributed
(i.i.d.) random variables, where their probability distribution
is coded by the cumulants. The diagonal matrix elements will
be i.i.d. random variables statistically independent from the
off-diagonal matrix elements or, as in the case of the Laplac-
ian matrix, statistically dependent on them. In either case
(statistically dependent or not) different specifications of the
cumulants correspond to a full matrix or a sparse one. This
general approach does not lead to complications and all the
three above-mentioned steps are performed.

In Sec. III we discuss some puzzling features of the useful
functional representation that decouples pairs of replica
fields and its equivalence with the older method of auxiliary
variables. The reader who is satisfied with formal inversion
of operators without closer inspection, may safely skip read-
ing this section.

Section IV contains the saddle-point method, the nonlin-
ear integral equation and the main result of the paper: the
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limiting resolvent of the Laplacian of a random matrix with
i.i.d. entries, rescaled in the manner of Wigner, may be com-
puted by a naive use of Pastur law of addition of random
matrices, despite the statistically dependence of the diagonal
entries. Our result generalizes a previous one [2], obtained
by diagrammatic methods and the assumption that the off-
diagonal matrix entries are i.i.d. central Gaussian variables.
We think that the general and straightforward approach of
this paper has some merits: indeed, as a by-product, we ob-
tain, at the beginning of Sec. IV the well-known Pastur law
of addition of random matrices, in the replica formalism.
Section IV ends with the nonlinear integral equation per-
tinent to the random graph. We included it to emphasize the
generality of the replica formalism and the difference be-
tween Wigner-rescaled matrix ensembles (and their Lapla-
cians) which leads to analytic solutions whereas ensembles
where the matrix entries are of order 1/N are much more
difficult. It seems likely that everything in the paper may
equally be expressed in terms of the supersymmetric method.

II. EXACT REPRESENTATIONS
A. Notation

Let H be a N X N real symmetric matrix. Let us suppose
the diagonal entries H,, are N i.i.d. random variables and the
probability density of any of them is P,(H,,). Let us suppose
the off-diagonal entries H, ;, where r<s, are (N*~N)/2 i.i.d.
random variables and the probability density of any of them
is Pyg(H, ). Let us write the expectations

<dm> =f (Hrr)de(Hrr)dHrr’ <Um> =f (Hrs)mpoff(Hrs)dHrs'

Let G(z) be the matrix resolvent

Gi(2) =[(aly~ H)_l]ij, Imz>0. (2.1)

Perturbation expansion in powers of H shows that the expec-
tations of all diagonal elements (G;,(z)) are equal and of the
off-diagonal elements (G;;(z)) are also equal:

1
8(@) ifi=j, —(rG(z)) =g(2),
(Gij(2)) = N (2.2)
giz) ifi# .
The representation of the inverse matrix and usual definitions
for the partition function Z(z) and the averaged spectral den-

sity p(\) are
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_ l) (H dd) ) (ilz)Ei,j¢i(Z - H)ij¢j¢i¢j

f (Hd¢z) (122 j¢i(z — H)jj¢;

(2”7 NI2

’— 2
AY det(ZIN - H)

>

- N
Z(z) = f ( II d¢i) D2 jbiz = )iy —
— \ =1

g(z)=- j%a—idn Z(z)), p(\)=- 71—7 Img(\). (2.3)

To get rid of the denominator of the resolvent, let us intro-
duce n copies QSE“), a=1,2,...,n

4 (@ (@
Z(2)=27"(z) = f ( Hd¢,('a)>e(’/2)2infﬂ¢i (- )y~
a=1 i=1

e 2 (BE-
=——— lim\ —— ).
g N 9z n—0 n

B. Exact representations

(2.4)

The above introduction of bosonic replicas allows an easy
averaging over the matrix ensemble and leads us to an exact
representation for any N for the averaged (Z,(z)) and resol-
vent, see Eq. (2.7) below, in terms of cumulants of the prob-
ability distribution of the matrix entries. Let us assume we
may first average on the entries H;;, then integrate over (Z)(ra),
and finally take the limit n — 0. Let us split the diagonal from
the off-diagonal entries

N
e(i/z)in’a((ﬁf.”))ZH <e_(i/2)HiiEa(¢,('a))2>
i=1

x]1 (e‘iHr.c2a¢5“)¢§-a)>.

r<s

(%1t = 1y

(2.5)

This has a compact representation in terms of cumulants
of the moments of the matrix entries. Let x be a random
variable, we may define the cumulants c; by equating the
powers of « of the exponential generating functions

In{e™) = ln[2 ik(xk)] 2 ]la’cj

k=0 k! =1
that is

cr=(), =)@ 3= () =30 +2(x),

cq =M — 403 = 3G + 12030 x)? - 6(x), ... .
(2.6)
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To simplify the notation, we call ¢ 4, ¢;, the k cumulants
of the diagonal and off-diagonal entries of the random matrix
H. One obtains the exact representation1

(Z,(2)= f H dd’,('a) e(i/z)zz’)’: S ¢£a)e 7
i,a

N . .
F=3 1[ (I
j=1 ] =1 2 a
te 2 t@d%@i. @.7)
1=r<s=sN o

C. The random Laplacian matrix

An analogous integral representation holds for a random
Laplacian matrix. Let us suppose that the real symmetric
random matrix H;; is a Laplacian matrix: we assume that the

def
diagonal elements are H; = —X;.;H;;. Again we assume that
the N(N-1)/2 random variables H,; with i <j are i.i.d.
Since

Z dH =~ 2 (¢i)2(2 H;+ 2 Hij) + 22 bidH;
i,j i J<i j>i i<j

== 2 Hij(¢i - ¢j)2

i<j

(2.8)

the partition function, the averaged resolvent, and their rep-
licated versions are

Ze) = f (H do, ) (U222 () pi12)Z; Hiy( ;- ¢>_/-)2,

¢()=— 1%;’1011 Z()),

Zn(Z) = Zn(z)
% n N
_ f (H H d ¢[(a)) RUDINC R e(i/Z)EKjHU-Ea (¢ - ¢;.’)2’

- \ a=1 i=1
249 V4 -1
m<L> 9
N(?Z n—0 n

glx)=—-——1

Tt s easy to check that this integral representation is
an absolute convergent integral for every integer n. Indeed
; . ()2
1 N N |/ -
lexp{Sjo15icsa%) (520t ¢y VH =TT, [(e 2 ald ) < |
and similar relation holds for the factor containing H, ;.
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Again one may perform the average over the matrix en-
semble to obtain an exact expression in terms of the cumu-
lants c; of the moments of the off-diagonal entries

(Z,(2)) = J [T dg@ e b6 o
i,

F= X Eji,cjléﬁ(ﬁ—qsf‘)z]]. (2.10)

Isr<ssNj=1J"

D. Special cases

It may be useful to recover from the general representa-
tions in Egs. (2.7) and (2.10) some cases corresponding to
special probability distribution for random matrices, which
have been studied by use of bosonic replicas.

1. The Gaussian ensemble

In the Gaussian orthogonal ensemble (GOE) the joint
probability density of the real symmetric random matrix is
P(H)

P(H) = const X e~ (12 B2

Then all cumulants are zero except the second one, cz,d=02
and ¢, ,=0?/2. The exponent F in Eq. (2.7) is

Feo fz [2 ¢<a)¢<a>]2 __ 0_22 [2 ¢(a)¢(ﬁ)]2
8 s - r s r r °

8 a,B r
2.11)

The F exponent of the replicated partition function of the
Laplacian matrix with Gaussian entries (2.10) is

LA [E(¢£“>—¢§“>>2]2. (2.12)

161Sr<sSN a

2. The sparse random matrix

In the case of the sparse random matrix considered by
Rodgers and Bray [3], the independent entries J;;, i< j, have
a even probability distribution so that (v**1)=0, (v*)
=p/N for k=1. The same even probability distribution and
its asymmetric generalization have been studied in Ref. [4].

The equation to evaluate the cumulants is

In[(e™@%)] = ln{l + 214 cos a/)] =S S ia)y
N =1 J!
Then the exponent F in Eq. (2.7) is

F= ; lnll + ]%(— 1 +cos %% (¢(r‘1))2)}

+ X

1sr<ssN

ln{l + %(— 1 +cos % ¢(,“)¢§“)>}.

(2.13)
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If only the limit N— o is investigated, the first term in the
above equation may be dropped and the second one may be
approximated

F~12)> lnll + ]%(— 1 +cos > ¢,<ra>¢§a>>]
a=1

r,s

(2.14)

n
_ P _ (a) 4()
ZN%( 1+cosa§1¢, b )

3. The random graph

The case of the random graph was often analyzed as a
Bernoulli probability distribution of the off-diagonal entries
of the random matrix H;;, i <j, where H,; is —=1/q with prob-
ability ¢g/N and O with probability 1—-g/N, while the diago-
nal entries vanish H;;=0.

Then (v*)=%(~1/¢)* for k=1 and the equation to evalu-
ate the cumulants ¢; is

In{e®) = 1n{1 + L pata _ 1)} =S S (2.15)
N =1 J!
Then the exponent F in Eq. (2.7) is

F=3 ln{l - ]% + I%e-<“4>2’2:1¢5“ ¢.§’] . (216)

r<s

The F exponent of the replicated partition function of the
Laplacian matrix (2.10) is

F= X

I1sr<ssN

ml1-Z4 ze—(iﬂq)ﬁa(qsﬁ") - )2 '
N N

(2.17)

The spectral density corresponding to Eq. (2.17) is studied
in Refs. [5-7].

4. The diagonal random matrix

For future reference we also recover the partition function
and resolvent for the simple case of the diagonal random
matrix. Of course in this trivial case, replicas are totally un-
necessary.

From Egs. (2.6) and (2.7)

© k )
<ead> - 2 %<dk> — eE;il(l/j!)a’cjyd’
k=0 "+
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<z&»_fHd&wWMzﬂﬂjiﬂwﬂm(—w,@ﬂ

={fﬁd¢ (z/2)z¢¢2 <dk><_(¢ ¢)> }N=[E( D <d">( ) fﬂd"s (i/z>zq§~<£]N
a=1 ()k'

N
_ m7r/4(277_)n/22 dk>’l<’l + 1) (E ke 1>Z—(n/2)—k:| ‘
[ “ 2\ 2

Then for n—0

N
%@%l””—2<w*]

g(2) = E k+1 a2 O‘))\ (2.19)

II1. HILBERT-SCHMIDT WITH REPLICAS

The next step in the analysis of the replicated partition
function, (2.7) and (2.10), is to transform the part of the
integrand of (Z,(z)) that involves sums on pairs of sites into
a form involving only sums over single sites. Having done
that, the partition function may be written as an integral
where the number of sites NV appears just as a parameter.

This was done by Rodgers and Bray [3] by introducing a
set of auxiliary variables q,,qqg,qagy,---» With the corre-
sponding Hubbard-Stratonovich identities. The same authors
used a functional representation in the case of a Laplacian
matrix [8]. It seems very convenient to use a functional
Hubbard-Stratonovich transform

oD%, K ) _ f Dge~ (112144404188 C(do g Bp=1Z ] 18(8)

(3.1)

suggested by Fyodorov and Mirlin [9] and discussed in more
detail in the appendix of Ref. [10].

An analogous functional integral representation is dis-
cussed by Parisi [11] for euclidean random matrices

e~ BV, V%) = (const) f doe V2B dxdya )V =)o)+ otx)

(3.2)
As it is indicated by Parisi, Eq. (3.2) follows from the famil-
iar identity

(COHSt) f do_e(I/ZB)fdxdy(r(x)V"l(x—y)cr(y)+fdx](x)o’(x)

o~ BlxdyI()V=-y)J(y) (3.3)

after the choice of the source J()C):Ejy:1 Ax—x;).

=0 k!

(2.18)

A. The problem

In the Gaussian case, the sum over pairs of sites, occur-
ring in the exponent F, Egs. (2.7) and (2.10), is a homoge-
neous polynomial of degree 4. In the case of a general prob-
ability distribution, cumulants of arbitrary high order are not
zero. Yet it will be apparent in the next section that also in
this case the large-N saddle point analysis of the resolvent
leads to the Gaussian case in leading order: cumulants c;,
with j=3 are associated to nonleading terms, if the random
matrix elements are rescaled in the manner of Wigner.

Then these integral representations are rather puzzling be-
cause they involve the inverse of the integral operator
K(¢,, ;) which is a polynomial (in the most important case)
and therefore the eigenspace corresponding to the null eigen-
value has infinite dimension.

Still the method is very useful and leads to correct results.
It was correctly indicated by Fyodorov how to evaluate the
inverse operator in a subspace. This section is a little elabo-
ration on the Fyodorov appendix [ 10]. Our conclusion is that,
provided a regularization of the problem is allowed, the
functional Hubbard-Stratonovich transform is correct and
identical to the set of usual Hubbard-Stratonovich identities.

B. The symmetric matrix

Let us consider all replicas in a box —-L=< ¢£a>$L, r
=1,...,N, a=1,...,n. Let J), be the n-component vector
with components (b(ra), a=1,...,n.

Consider the integral operator kernel K ((Z),, q*SS) with finite

rank D (to make the discussion simpler, we shall ignore the
imaginary unit factors in this section)

n j D
mmE(EMW)EWmJ
J= 1] Jj= 1]
— 2 2 ¢(a1 ¢(01j)¢(a’1) .. ¢(,aj),
i ]' S r s s

EM@¢)242

j—l tap,..q;

N 2
(E@Ww@ﬂ.em
r=1

It maps an arbitrary integrable function f((;SS) to the function

¢(é,) € S, which is the linear finite D-dimensional vector
space spanned by the set s of linearly independent vectors
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s={V, VD, L f VG, D) =1{b,(H,)}

v=1,...,D,

L L n
|| K@dandid =@y, ad=Tlage
—L -L a

(3.5)

The vector bases s is made of D nonorthogonal vectors

by(é,). The integral operator K((%,,g?)s) has D orthonormal
eigenvectors e,, corresponding to nonzero eigenvalues

L L
| | Knbaesdiad =neidy.
-L -L

D
K(ir’ (Z)s) = E )\Vev((z)r)ev((z;s),
=1

def D

C(b,, )= E e e (),

D

> e d)ed) = p( ).

v=1

L
|| K400, 30, -
-L

(3.6)

The vector bases {b,($,)}, and the orthonormal bases
{eV(czr)} are related by a linear invertible matrix A

b —EAV,L e, e -E(A ) b s

L
A= f b(b)e($)dd,. (3.7)
-L

As indicated by Fyodorov, the functional Hubbard-
Stratonovich transform (3.1) is a compact representation of
the multiple 1ntegral

D

. N - |2
(12, Kby Z T e—(l/mV{Eer e,(rf:,)]
v=1
D o0
_Hj dz, o125 ze ()
- € )
= — \’277'

’In the functional integrals, Dg refers to the product, properly

normalized, of the coordinate of the function g((Z)) with respect to
an orthogonal bases, then Dg=II,V\,/27dz, and Eq. (3.1) should
be written

e~ 12%, K(bpd) = \[det C f Dge11DIdbdd18(G)Cb0 b I)=i2L18(d))-

(3.8)
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D

g(d) =2 I\z,e(d,),
=1

f d(z)ad(Zbg((Za)C((Zm (zb)g((z)b) = 2 Z,ZJ,' (39)
s

After a trivial relabeling of the coefficients in the form (3.4),
one uses the usual set of Hubbard-Stratonovich identities

s > N -
o~ U2)%, K(b.6) _ ,~(112)% V_lc(v)|:2 bM,)}2

r=1
D o
= HJ d,ée_(l/z)qv ZZNI\CVqu (¢r
=1 J o N2
(3.10)

Finally, one may notice that the set of integration vari-
ables ¢, and z,, are related by an orthogonal matrix A which
shows the direct equivalence of the two multiple integrals
(3.9) and (3.10)

2 [e(v)
Cc\vV
qdv= E -AV/.LZ/.U AV,U.= _AV/.L’
p=l A

i

Srr qu Ezw quv Hdzy

(3.11)

E ‘AV7AVO'

The orthogonality of the matrix A (last line above) follows
from the equation

NoByr= 2 (VA A, (3.12)

which is obtained from
K(dpd) = 2 Nedd)e(d) =2 c()b($)b,(H,)
(3.13)

after multiplying and integrating [ d(Z),d(Zseg(ér)eT(Jbs). Fi-
nally

D
2(d) =2 Wz d)= 2 WIA),0q,]
=1 V,0, U1
XA, ()= 2 W oAgolA™), b (B,
V,0, 10

= D Ve, q,b (). (3.14)
Y23

C. The random Laplacian matrix

The replicated partition function for the symmetric ran-
dom Laplacian matrix is Eq. (2.10). Again ignoring imagi-
nary unit factors, the finite rank kernel of the integral opera-

tor is K(b,, b)
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D

K d) =3 ~L1(d,— ) - (b,— BV

. 3.15
35 (3.15)

Let us assume the box regularization, as in the discussion of
the symmetric random matrix above. Just as before, the ker-

nel K((Z,, (Z)s) in Eq. (3.15) is a symmetric bounded integral
operator that maps the integrable function f(g_{;s) to the func-
tion g(¢,) € Sp, spanned by the nonorthogonal bases b,(,),
see Eq. (3.5). It is then possible to represent the kernel
K(&,, és) in Eq. (3.15) with its orthonormal bases and obtain
Fyodorov functional Hubbard-Stratonovich representation or

represent it on the nonorthogonal bases b(b,), perform the
sum over couples of sites and use the Hubbard-Stratonovich
identities.

PHYSICAL REVIEW E 74, 051120 (2006)

Let us consider the first term in the sum in Eq. (3.15). By
the trivial identity

(Zr' $r+(z)s' $s=(1+$r' (Z)r)(l"'(Zs' @s)
_((Z)r' (Z;r)((z;s (Zs)_ 1.

The first term is rewritten as sum of factorized and symmetri-
cal terms

%(&r_ (Zs) : (Q_Z;r_ (Z;s = %{(1 + $r' (;r)(l + QZS ) (ZY)

— (¢, Gy~ b)) —1-2(,- B}
(3.16)

All further terms in the sum are integer powers of the first
term, then a finite sum of factorized and symmetrical terms is
obtained.

In particular, in the Gaussian case, where only the cumu-
lant ¢, # 0, we have

E K($r’ (Z)s) = %2 [(er_ @s) : (er_ @s)]z = %E ((Zr : (Zr"" d—;s ! (Z)s)z + 4((Zr : d_;s)z - Z(QZ,, : @s)(é;r : $r+ (Z)s ' st)

=%HE (1+4,- m% [E (&, $r)2]2+zv2—2[2 (1+ - &)T—z[z é- &T—z[E (&, )1

v, &)}%42 [2 ¢5a>¢<f>}2-42 [2 91+ §, - q3,>]2+42 [2 #9(, - $,>]2+42 [2 ¢£a>]2}.
af a r @ @

r

This form is suitable to linearize the squared sums of single
sites by the introduction of nine auxiliary variables through
Hubbard-Stratonovic identities. The method also works for
arbitrary power j>2 of the basic form in Eq. (3.16), but it is
cumbersome and by far less efficient than the functional in-
tegral representation.

IV. LARGE N

As a preparation for the main result of this paper, about
the limiting resolvent of Wigner-rescaled random Laplacians,
we first consider an ensemble of Wigner-rescaled matrices
which leads to a derivation of Pastur addition law of random
matrices in the replica formalism.

A. Pastur addition law

The first problem here considered is the large N behavior
for the symmetric matrix where the probability distribution
of the off-diagonal entries is central Gaussian with Wigner
scaling, while the probability distribution of the diagonal

r r

(3.17)

entries is arbitrary and not rescaled. Then c;,=0 iff j # 2 and
Cpp—>ColN.

After separating the sums over single sites from sums
over couples of sites, the replicated partition function (2.7)
becomes

72 = [ TLagitetm2o:boer
I,a

X AN, (B, - 6, e—(c2/4N)2m.(Ea ¢(,“)¢§“))2

>

def N ; o j
FFE ._'Cj,dz —_2(¢r )]
J r=1 2 a

=17

(4.1)
By using the functional representation (3.8) we have

(Z,(z))y=det C f Dge(112)(e:Co)N In Ig],

def . I - .
e]= f d e P S (U0 = (1) $V=ig(P) e AN - 6
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def

K(er’ QZS)Z ;Tz\l(gzr QZS)2~ (42)

The large N behavior of the functional integral is dominated
by the saddle point function ggp

Cosp)() = — 1
( gSP)(¢) I[gsp] |: 5g(¢) ]g:gsp
N iy (1ihey f- (200 isspld)
I[gSP]
= — d — .
gsp(¥) Tgse] f ¢ (¢ )

D26 3420 (Ujes f- ) b - HV-izsp(d) (4.3)

The above equation shows that ggp(t) is a quadratic function

of . We consider the ansatz symmetric in the replica fields

N 1 S
gsp(p) = EB(Z’C_/‘,d)d)' ¢ (4.4)

then the function B(z,c; ) is solution of the nonlinear equa-
tion

Baci) e 1 4
2 nl(ﬁ)azl(ﬁ)’

where
1(B) = f deIDERE 2 (U0 = 206 3 (4 5)
This leads to the evaluation of the limiting resolvent because

1
-2 lim —@a—l(ﬁ)

and, by comparing /(8) in Eq. (4.5) with the partition func-
tion (Z,(z)) of an ensemble of diagonal random matrices in
Egs. (2.18) and (2.19), we see that®

1(B) =[Z,(z~ BN,

lim g(z) = (4.6)

N— n—0 n

B(Z’ Cj,d)

lim g(z) = lim Gd[Z - 8(2)],
N—ox© N—ox

(4.8)

where G,(z) is the resolvent of an ensemble of diagonal ran-
dom matrices with probability distribution coded by the cu-
mulants c; ;.

The functional equation for the limiting resolvents (4.8) is
the law of addition of random matrices proved by Pastur [12]

3f all diagonal cumulants vanish, c; ;=0, the Gaussian integrals at
the right side of Eq. (4.5) are easlly evaluated and one obtains the
quadratic equation S3%(z)—z8(z)+c,=0. Together with Eq. (4.6),
one then recovers the semicircle law

1 1 E—
lim g(Z) = _B(Z’Cj,d) = _(Z - VZZ - 4C2) . (47)
(&) Cy

N
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Pa(N) ot

s0= | a2 0=
(4.9)

We remark that the result (4.9) holds unchanged if one
considers the general case of non-Gaussian probability dis-
tribution for the off-diagonal matrix entries, provided Wigner
scaling is still considered and the first cumulant vanishes,
¢1,=0, [13,14]. Then ¢;,—c;,/N'"* for j=2. Indeed, for a
general probability dlstrlbutlon the previous analysis is
modified by the replacement

1
——TIm G,\).
ar

EK(¢,,¢5) 2 E( i, b

(4.10)

(68— E T

The series of new terms, inserted in Eq. (4.3) only add con-
tributions to the limiting resolvent, which are nonleading or-
der in the large-N limit.

B. The Wigner-rescaled random Laplacian matrices

The large-N spectral distribution of a real symmetric La-
placian random matrix, where the matrix entries are Wigner
rescaled, may be determined by the same saddle point
method described above.

Let us first consider the simple case of Gaussian probabil-
ity distribution. Then Eq. (2.10) becomes

: . 7 " 7 7312
(Z.(2)) = J [T dp\@ iD=t 6N, [, = ) - (= B)T

(4.11)
Instead of Eq. (4.2), we now have
<Z,1(Z)> = Vdet Cf Dge—(]/Z)(g,Cg)+N In l[g]’
def . -
I[g]= dg,e(i/2)z¢-¢—ig(¢),
.. def cy o - N . N
K((;brs ¢v) = gv[(d)r - d)v) : (¢r - d)‘v)]z' (4]2)

The large N behavior of the functional integral is dominated
by the saddle point function ggp

- N S
C = Ji = (z/zw Yrigsp( t//)
(Cosoll¥) I[gSP]|:§g(1Z) ]L:gsp Mgsp]
- IN - Cy
gsp(ih) = - Teor] fd¢8N

X[($= ) - (b= ) PePbdissd (4.13)
The above equation shows that gsp(zZ) is a quartic function of

. We consider the ansatz, symmetric in the replica fields
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- 1 - - - -
gsp() = alz) + E,B(Z)lﬂ- e+ V(- )

then y(z)=—ic,/8 and the function B(z) is the solution of the
nonlinear equation

@__2< ﬁ)Li
>~ T\ )i

where

1(8) = f d e IDBE b-(cy9)(&- 67 (4.14)

This leads to the evaluation of the limiting resolvent because
Eq. (4.6) still holds and

lim g(z) = },ml Gyelz—c28(2)), (4.15)

N—x
where Gd’g(z) is the resolvent of an ensemble of diagonal
random matrices where the entries are i.i.d. centered Gauss-
ian variables with variance c,. The result (4.15) was derived
in Ref. [2] by diagrammatic technique and Wick’s theorem,
to account for the Gaussian matrix entries with a constraint
on each row of the matrix.

The present derivation shows that the result (4.15) for the
limiting resolvent holds also in the general case where the
off-diagonal entries of the real symmetric random Laplacian
matrix are i.i.d. random variables with arbitrary probability
distribution, coded by the cumulants c;,, provided they are
Wigner rescaled and that the first cumulant vanishes, ¢,
=0.

Indeed, for a general probability distribution, the previous
analysis is modified by the replacement

2 K((Z;r? (Zs) = E 8672\7[((;}‘_ d_;s) : ((Zr_ %s)]2

s eslic g6 gl
2 |50 (@b |
(4.16)

The series of new terms, inserted in Eq. (4.13) only add
contributions to the limiting resolvent, which are nonleading
order in the large-N limit.

Finally, we remark that our result (4.8) refers to an en-
semble where the diagonal elements are statistically indepen-
dent from the off-diagonal entries. Then we merely derived,
by a different technique a specific case of Pastur’s law of
addition of random matrices. The similar result about La-
placian matrices (4.15) is different because, at any finite N,
the diagonal matrices are not statistically independent from
the off-diagonal entries and Pastur theorem does not apply.
Only at N=%, because of the central limit theorem, do the
diagonal entries become centered Gaussian random vari-
ables. Our saddle point analysis indicates that the rate of
convergence for the diagonal entries to become statistically
independent from the entries on the same row is fast enough
to justify a naive use of Pastur’s law also in this case.
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Let L be a real symmetric Laplacian random matrix where
the off-diagonal matrix entries are i.i.d. random variables.
The graphic-combinatorial method described in Ref. [15]
may be used to evaluate (TrL¥), for any N and generic prob-
ability distribution. We evaluated the Taylor expansion of the
resolvent g(z) in 1/z up to order (1/z)%. Next it is trivial to
rescale the results according to Wigner rescaling of the ma-
trix entries, evaluate the large-N limit and find results in
agreement with Eq. (4.15). This adds independent support to
the saddle point analysis of this paper.

C. The random graph

In models of sparse matrices or in the random graph
model, the probability distribution for the entries of the ran-
dom matrix P(H;;) is such that the cumulants c; are of order
1/N, in the large-N limit, for every j. The general saddle
point method of this section is still valid, but the nonlinear

integral equation obtained for gsp(lz) is more difficult.

In leading order the diagonal cumulants ¢; ; may be ne-
glected and instead of Eq. (4.3) we have

) iN N S Ny S
gSP(‘/f)z_ I[gSP] Jd¢e(z/2)z¢¢—8sP(¢)2 _].%(_ld, by,
j=1

Mggel= f d eli?)=6 disse() (4.17)

If one looks for solutions with spherical symmetry in the

replica space, that is gsp(sz)zgsp(|1/7), the angular integra-
tions are easily done and only the terms in the series (4.17)

which are proportional to c¢;, with j even integer contribute.
We find

e’}

e ei/2zp2—igsP(p)F(p| ¢Z|)dp
0

8SP(|‘Z|) =

f pn—le(i/Z)zpz—igsp(P)dp
0

Y S Cok Kk 2k| 712k
Flplg) = > (-1 :
(o) E(Zk)!( ) o7l ary
B 13) -+ (2k = 3)(2k = 1)
Tnn+2) (n+2k-4)(n+2k-2)°

1 ) 3(5)--(2k=3)(2k-1)
2(4) - +(2k-4)(2k-2)

Aoy (4.18)

00 _ . 2_.
For n~0, [gp" L(if2)zp ’gSP(P)~ﬁ, a2k~(

. . . .4
and we obtain a simpler nonlinear equation

- * . 2 . -
gsplli)) = f el =isselP) f( plyd)dp,
0

*As a simple check of our evaluation (4.19), one may insert cy;

=p/N+O(1/N?) and obtain f(p|¢d)=—(p/N)|¢1J,(p|#]) which pro-
duces the nonlinear equation first derived by Rodgers and Bray [3].
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flplih =2 (k—l)c'w(_ D gPE (4.19)
k=1 k!

A variety of approximate solutions may be found in Refs.
[3,4]. An analogous nonlinear integral equation is obtained
for the random Laplacian. Its approximate solutions may be
found in Refs. [8,6,7,5]. A numerical solution is studied in
Ref. [16]. Moments of the spectral density of random graphs
and Laplacian matrices are studied in Ref. [17]. Correlation
functions of random matrix theory with the replica method
are studied in Ref. [18].

V. CONCLUSION

The limiting spectral distribution for ensembles of real
symmetric random Laplacian matrices with independent
identically distributed Wigner-rescaled matrix entries has
been derived in this paper. This is a generalization of previ-

PHYSICAL REVIEW E 74, 051120 (2006)

ous results obtained with different techniques in the case of
Gaussian matrix entries.

The replica method, combined with a Hubbard-
Stratonovich functional identity (reviewed and explained in
Sec. III) turns out to be a very powerful and general method
in the study of random matrices. In the derivation of our
main result, the Pastur law of addition of random matrices is
recovered by the replica method.

Our derivation, up to the large-N saddle point analysis,
applies to Wigner rescaled matrix ensembles as well as to
ensembles of sparse matrices, where usually (v*)~ O(1/N).
The relevance of the different scalings emerges at that point:
in the case of ensembles of sparse matrices, the nonlinear
integral equation is very difficult to solve analytically.
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